FÍSICA PARTÍCULAS

El CERN pulveriza su propio récord de precisión

El Centro Europeo de Física de Partículas (CERN) ha batido su récord de precisión en la medición de la antimateria y “probablemente”, por primera vez, ha logrado una medida más precisa para esta que para la materia.

<p>Centro Europeo de Física de Partículas (CERN) en Meyrin, cerca de Ginebra (Suiza). EFE/Valentin Flauraud.</p>

Centro Europeo de Física de Partículas (CERN) en Meyrin, cerca de Ginebra (Suiza). EFE/Valentin Flauraud.

En el experimento, para el que se empleó un nuevo método, los físicos midieron el momento magnético -que determina cómo se comporta una partícula cuando está dentro de un campo magnético- de un antiprotón.

Dicha medición ha mejorado en un factor 350 la que realizó el CERN el pasado enero de un antiprotón, que era su récord previo, el cual superó en un factor 6 las efectuadas en 2013.

Además, “es probablemente la primera vez que los físicos realizan una medida más precisa para la antimateria que para la materia, lo que demuestra los extraordinarios progresos realizados por el desacelerador de antiprotones del CERN”, según Christian Smorra, autor principal de un estudio que publica Nature.

Gracias a este resultado se ha podido hacer una comparación inédita entre materia y antimateria, según los participantes en el estudio, que se realiza como parte de una colaboración científica multinacional (conocida como BASE) que utiliza el desacelerador de antiprotones.

“Estamos ante el resultado de varios años de esfuerzos en la investigación y el desarrollo. Se trata de una de las medidas más difíciles jamás realizadas en una trampa de Penning”, dijo el portavoz de BASE, Stefann Ulmer.

La trampa de Penning es un dispositivo que permite atrapar la antimateria cargada eléctricamente con el fin de estudiarla, para lo cual debe mantenerse separada de la materia evitando así su destrucción.
Un científico observa las imágenes de la colisión de haces de protones. EFE/Salvatore Di Nolfi


El desacelerador de antiprotones del CERN es una máquina única, que produce antiprotones de baja energía para “fabricar” átomos de antimateria y así poder estudiar este fenómeno.

Asimismo, ese desacelerador consigue “controlar” y transformar esos antiprotones en haces de baja energía que luego envía a otros experimentos del CERN que los requieren.

A nivel de las partículas elementales existe una simetría casi perfecta entre materia y antimateria, pero a escala cosmológica la materia es preponderante con respecto a la antimateria.

Para comprender esa contradicción, los científicos comparan las propiedades de las partículas y de las antipartículas correspondientes con una gran precisión.

Se considera que cualquier diferencia en los valores medidos pondría en cuestión el modelo estándar de la física de partículas y podría abrir las perspectivas de una nueva física. EFE
Etiquetado con: , ,
Publicado en: Ciencia
En el experimento, para el que se empleó un nuevo método, los físicos midieron el momento magnético -que determina cómo se comporta una partícula cuando está dentro de un campo magnético- de un antiprotón.

Dicha medición ha mejorado en un factor 350 la que realizó el CERN el pasado enero de un antiprotón, que era su récord previo, el cual superó en un factor 6 las efectuadas en 2013.

Además, “es probablemente la primera vez que los físicos realizan una medida más precisa para la antimateria que para la materia, lo que demuestra los extraordinarios progresos realizados por el desacelerador de antiprotones del CERN”, según Christian Smorra, autor principal de un estudio que publica Nature.

Gracias a este resultado se ha podido hacer una comparación inédita entre materia y antimateria, según los participantes en el estudio, que se realiza como parte de una colaboración científica multinacional (conocida como BASE) que utiliza el desacelerador de antiprotones.

“Estamos ante el resultado de varios años de esfuerzos en la investigación y el desarrollo. Se trata de una de las medidas más difíciles jamás realizadas en una trampa de Penning”, dijo el portavoz de BASE, Stefann Ulmer.

La trampa de Penning es un dispositivo que permite atrapar la antimateria cargada eléctricamente con el fin de estudiarla, para lo cual debe mantenerse separada de la materia evitando así su destrucción.
Un científico observa las imágenes de la colisión de haces de protones. EFE/Salvatore Di Nolfi


El desacelerador de antiprotones del CERN es una máquina única, que produce antiprotones de baja energía para “fabricar” átomos de antimateria y así poder estudiar este fenómeno.

Asimismo, ese desacelerador consigue “controlar” y transformar esos antiprotones en haces de baja energía que luego envía a otros experimentos del CERN que los requieren.

A nivel de las partículas elementales existe una simetría casi perfecta entre materia y antimateria, pero a escala cosmológica la materia es preponderante con respecto a la antimateria.

Para comprender esa contradicción, los científicos comparan las propiedades de las partículas y de las antipartículas correspondientes con una gran precisión.

Se considera que cualquier diferencia en los valores medidos pondría en cuestión el modelo estándar de la física de partículas y podría abrir las perspectivas de una nueva física. EFE

RSS Feed desconocido

Uso de cookies

Utilizamos cookies propias y de terceros para mejorar nuestros servicios y mostrarle publicidad relacionada con sus preferencias mediante el análisis de sus hábitos de navegación. Si continúa navegando, consideramos que acepta su uso. Puede obtener más información, o bien conocer cómo cambiar la configuración, en nuestra política de cookies, pinche el enlace para mayor información.

Login

Registro | Contraseña perdida?