HISTORIA MATEMÁTICAS

Una tablilla con 3.700 años desvela algunos secretos matemáticos de los babilonios

Una pieza de arcilla de 3.700 años de antigüedad que ha desconcertado a los matemáticos desde principios del siglo XX es, en realidad, una sofisticada tabla trigonométrica que los babilonios utilizaron para construir edificios y canales, según un estudio que publica la revista Historia Mathematica.

<p>Fotografía facilitada por la Universidad Australiana de Nueva Gales del Sur (UNSW) que muestra el Primpton 322, una tablilla babilonia de 3.700 a

Fotografía facilitada por la Universidad Australiana de Nueva Gales del Sur (UNSW) que muestra el Primpton 322, una tablilla babilonia de 3.700 años de antigüedad que se encontraba en la Biblioteca de Manuscritos y Libros Raros de la Universidad de Columbia de Nueva York.

Investigadores australianos aseguran haber descubierto el propósito con el que se grabaron las inscripciones de la tablilla conocida como Plimpton 322, encontrada en el sur del actual Irak hace alrededor de cien años.

La pieza lleva inscritas cuatro columnas y 15 filas de números en base sexagesimal, en escritura cuneiforme, que demuestran que la trigonometría -el estudio de los triángulos- surgió en Babilonia al menos mil años antes que en Grecia.

Intrigado a los matemáticos


Plimpton 322 ha intrigado a los matemáticos desde que se dieron cuenta de que contiene secuencias numéricas conocidas como ternas pitagóricas, grupos de tres números que cumplen la ecuación del conocido Teorema de Pitágoras, que relaciona los catetos con la hipotenusa de un triángulo rectángulo.

“El gran misterio, hasta ahora, era su utilidad. ¿Por qué los antiguos escribas habían acometido la compleja tarea de generar y ordenar esos números en la tablilla?”, dijo en un comunicado de la Universidad de Nueva Gales del Sur el investigador Daniel Mansfield.

Las inscripciones “eran una herramienta poderosa que podrían haber sido usadas para definir la topografía de terrenos, o para desarrollar cálculos arquitectónicos en la construcción de palacios, templos y pirámides escalonadas”, señaló.


Fotografía facilitada por la Universidad Australiana de Nueva Gales del Sur (UNSW) que muestra al doctor Daniel Mansfield mientras sostiene el Primpton 322.Fotografía facilitada por la Universidad Australiana de Nueva Gales del Sur (UNSW) que muestra al doctor Daniel Mansfield mientras sostiene el Primpton 322.


Las ternas de Plimpton 322 describen las formas de triángulos rectángulos a partir de cálculos trigonométricos basados en proporciones, en lugar de en ángulos y círculos, como es habitual en la tradición griega.

La tablilla babilónica se adelanta más de 1.000 años a la “tabla de cuerdas” del astrónomo y matemático griego Hiparco (190 a.C. – 120 a.C.), con la que lograba relacionar la longitud de los lados y los ángulos de un triángulo.

“Hay una gran cantidad de tablillas babilónicas, pero solo una fracción de ellas se ha estudiado hasta ahora. El mundo de las matemáticas tan solo está despertando ante todo lo que aquella sofisticada cultura nos puede enseñar”, afirma Mansfield. Efefuturo
Etiquetado con: ,
Publicado en: Humanidades

verde_gif_300x90

verde_gif_300x90 Máster de Periodismo de Agencia

BANNER_I-a-la-carta_cibertienda_300X250

BANNER_I-a-la-carta_cibertienda_300X250

DialogosComunicación_300x125_SmartCity

DialogosComunicación_300x125_SmartCityBlogs de ciencia y tecnología

Blogosfera de Ciencia y Tecnología

Información medioambiental
Map

Uso de cookies

Utilizamos cookies propias y de terceros para mejorar nuestros servicios y mostrarle publicidad relacionada con sus preferencias mediante el análisis de sus hábitos de navegación. Si continúa navegando, consideramos que acepta su uso. Puede obtener más información, o bien conocer cómo cambiar la configuración, en nuestra política de cookies, pinche el enlace para mayor información.

Login

Registro | Contraseña perdida?